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Talk Summary

For high performance, we must reformulate existing algorithms in
order to reduce data movement (i.e., avoid communication)

We want to tridiagonalize a symmetric band matrix

Application: dense symmetric eigenproblem
Only want the eigenvalues (no eigenvectors)

Our improved band reduction algorithm

Moves asymptotically less data

Speeds up against tuned libraries on a multicore platform,
up to 2× serial, 6× parallel

With our band-reduction approach, two-step tridiagonalization of a
dense matrix is communication-optimal for all problem sizes
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Motivation

By communication we mean

moving data within memory hierarchy on a sequential computer

moving data between processors on a parallel computer

SLOW 

FAST 

Local 

Sequential Parallel 

Local Local 

Local 

Local Local Local 

Local 

Local 

Communication is expensive, so our goal is to minimize it

in many cases we need new algorithms

in many cases we can prove lower bounds and optimality
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Direct vs Two-Step Tridiagonalization

Application: solving the dense symmetric eigenproblem via reduction to
tridiagonal form (tridiagonalization)

Conventional approach (e.g. LAPACK) is direct tridiagonalization

Two-step approach reduces first to band, then band to tridiagonal
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Why is direct tridiagonalization slow?

Communication costs!
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M = fast memory size

Direct approach achieves O(1) data re-use

Two-step approach moves fewer words than direct approach
using intermediate bandwidth b = Θ(

√
M)

Full-to-banded step (1) achieves O(
√

M) data re-use
this is optimal

Band reduction step (2) achieves O(1) data re-use

Can we do better?
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Band Reduction - previous work

1963 Rutishauser: Givens-based down diagonals and Householder-based

1968 Schwarz: Givens-based up columns

1975 Muraka-Horikoshi: improved R’s Householder-based algorithm

1984 Kaufman: vectorized S’s algorithm

1993 Lang: parallelized M-H’s algorithm (distributed-mem)

2000 Bischof-Lang-Sun: generalized everything but S’s algorithm

←

2009 Davis-Rajamanickam: Givens-based in blocks

2011 Luszczek-Ltaief-Dongarra: parallelized M-H’s algorithm (shared-mem)

2011 Haidar-Ltaief-Dongarra: combined L-L-D and D-R

see A. Haidar’s talk in MS50 tomorrow
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Successive Band Reduction (bulge-chasing)

constraint:
c + d ≤ b
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b = bandwidth
c = columns
d = diagonals
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How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in cache: O(ω) re-use
bulges cannot overlap, need working set to fit in cache
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Data access patterns

One bulge at a time Four bulges at a time

ω = 4: same amount of work, 4× fewer words moved
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Shared-Memory Parallel Implementation

lots of dependencies:
use pipelining

threads maintain working

sets which never overlap
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Communication-Avoiding SBR - theory

Tradeoff: c and ω

c - number of columns in each parallelogram

ω - number of bulges chased at a time

CA-SBR cuts remaining bandwidth in half at each sweep

starts with big c and decreases by half at each sweep

starts with small ω and doubles at each sweep

Alg. Flops Words Moved Data Re-use

S 4n2b O(n2b) O(1)

M-H 6n2b O(n2b) O(1)

B-L-S* 5n2b O(n2 log b) O
(

b
log b

)
CA-SBR† 5n2b O

(
n2b2

M

)
O
(
M
b

)
*SBR framework with optimal parameter choices

†assuming 1 ≤ b ≤
√

M/3

We have similar theoretical improvements in dist-mem parallel case
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Search Space for Autotuning

Main tuning parameters:

1 Number of sweeps and diagonals per sweep: {di}
satisfying

∑
di = b

2 Parameters for i th sweep
a number of columns in each parallelogram: ci

satisfying ci + di ≤ bi

b number of bulges chased at a time: ωi

c number of times bulge is chased in a row: `i

3 Parameters for individual bulge chase

a algorithm choice (BLAS-1, BLAS-2, BLAS-3 varieties)
b inner blocking size for BLAS-3
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Experimental Platform

Intel Westmere-EX (Boxboro)

4 sockets, 10 cores per socket, hyperthreading
24MB L3 (shared) per socket, 256KB L2 (private) per core
MKL v.10.3, PLASMA v.2.4.1, ICC v.11.1

Experiments run on single socket (up to 10 threads)
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CA-SBR vs MKL (dsbtrd), sequential

Speedup
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CA-SBR (10 threads) vs CA-SBR (1 thread)

Speedup
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CA-SBR vs PLASMA (pdsbrdt), 10 threads

Speedup
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Best serial speedups on Boxboro

On the largest experimental problem n = 24000, b = 300, our serial
CA-SBR implementation attained

2× speedup vs. MKL dsbtrd (p = 1 thread)

36% of dgemm peak (50% counting actual flops).

dsbtrd is a vectorized version of the S algorithm (O(1) reuse).

dsbtrd performance did not improve with p so we compared only
serial implementations.

MKL also provides an implementation of SBR (dsyrdb) but does not
expose the band-to-tridiagonal routine, so we could not compare.
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Best parallel speedups on Boxboro

On the largest experimental problem n = 24000, b = 300, our
multithreaded CA-SBR implementation attained

6× speedup vs. PLASMA pdsbrdt (p = 10 threads)

30% of dgemm peak (40% counting actual flops).

In PLASMA v.2.4.1, pdsbrdt is a tiled, multithreaded, dynamically
scheduled implementation of M-H algorithm (O(1) reuse).

We are collaborating with the PLASMA developers - they have
improved their pdsbrdt scheduler since (current version is 2.4.5).

Our CA-SBR implementation is not NUMA-aware so we restricted our
tests to a single socket (10 cores).
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Conclusions and Future Work

Theoretical Results

Analysis of communication costs of existing algorithms

CA-SBR reduces communication below lower bound for matmul

Is it optimal?

Practical Results

Heuristic tuning leads to speedups, for both the band reduction
problem and the dense eigenproblem

Implementation exposes important tuning parameters

Automate tuning process

Extensions

Handle eigenvector updates (results here are for eigenvalues only)

Extend to bidiagonal reduction (SVD) case

Distributed-memory parallel algorithm
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Thank you!

Nick Knight, Grey Ballard, James Demmel
{knight,ballard,demmel}@cs.berkeley.edu
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Anatomy of a bulge-chase

QR PRE 

SYM 

POST 

b+1 

d+
1 

c 

QR: create zeros

PRE: A← QTA

SYM: A← QTAQ

POST: A← AQ
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CA-SBR sequential performance (p = 1)

24000 1.78 1.85 2.25 2.55 2.78 2.93
20000 1.77 1.86 2.27 2.56 2.80 2.94
16000 1.77 1.87 2.27 2.57 2.80 2.95
12000 1.78 1.87 2.27 2.58 2.81 2.95
8000 1.80 1.85 2.27 2.59 2.80 2.96
4000 1.63 1.87 2.28 2.58 2.82 2.88
n / b 50 100 150 200 250 300

Table: Performance of sequential CA-SBR in GFLOPS. Each row corresponds to
a matrix dimension, and each column corresponds to a matrix bandwidth.
Effective flop rates are shown–actual performance may be up to 50% higher.
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CA-SBR parallel performance (p = 10)

24000 15.59 14.92 21.17 23.43 23.48 24.79
20000 16.29 16.47 20.81 22.78 22.89 24.56
16000 15.80 17.32 20.81 22.02 22.34 23.08
12000 16.06 18.29 20.19 20.28 20.76 21.74
8000 15.64 17.14 18.39 17.62 16.56 17.80
4000 13.36 12.56 12.82 11.48 10.26 10.44
n / b 50 100 150 200 250 300

Table: Performance of parallel CA-SBR in GFLOPS. Each row corresponds to a
matrix dimension, and each column corresponds to a matrix bandwidth. Effective
flop rates are shown–actual performance may be up to 50% higher.
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